Anderson-Stark units for ${\mathbb F}_{q}[\theta ]$
نویسندگان
چکیده
منابع مشابه
Computation of Stark-Tamagawa units
Let K be a totally real number field and let l denote an odd prime number. We design an algorithm which computes strong numerical evidence for the validity of the “Equivariant Tamagawa Number Conjecture” for the Q[G]-equivariant motive h0(Spec(L)), where L/K is a cyclic extension of degree l and group G. This conjecture is a very deep refinement of the classical analytic class number formula. I...
متن کاملIndex formulae for Stark units and their solutions
Let K/k be an abelian extension of number fields with a distinguished place of k that splits totally in K. In that situation, the abelian rank one Stark conjecture predicts the existence of a unit in K, called the Stark unit, constructed from the values of the L-functions attached to the extension. In this paper, assuming the Stark unit exists, we prove index formulae for it. In a second part, ...
متن کاملComputing Stark units for totally real cubic fields
A method for computing provably accurate values of partial zeta functions is used to numerically confirm the rank one abelian Stark Conjecture for some totally real cubic fields of discriminant less than 50000. The results of these computations are used to provide explicit Hilbert class fields and some ray class fields for the cubic extensions.
متن کاملunits in $mathbb{z}_2(c_2times d_infty)$
in this paper we consider the group algebra $r(c_2times d_infty)$. it is shown that $r(c_2times d_infty)$ can be represented by a $4times 4$ block circulant matrix. it is also shown that $mathcal{u}(mathbb{z}_2(c_2times d_infty))$ is infinitely generated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/6994